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The effect of the signal initial phase on the amplitudes of 
a DFT spectrum 
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Abstract. Knowing the amplitudes in a spectrum calculated using the 
Discrete Fourier Transform (DFT) algorithm is essential for precisely 
estimating the frequencies of a real-valued signal. Since the amplitudes 
are affected by the signal's initial phase, it is crucial to consider this 
aspect when estimating the signal frequencies. This paper presents the 
initial signal phase's effect on the values calculated for the real and im-
aginary parts and the magnitudes in the DFT of a real-valued signal. 
Analyzing the evolution of the amplitudes with the initial phase for a 
complete cycle for the initial phase, we found that the values in the mag-
nitude DFT are subject to minor alteration, while the values of the real 
and imaginary parts of the DFT are strongly affected by the initial phase. 
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1. Introduction  

The literature is rich with studies on accurately estimating the frequencies and 
amplitudes of signals [1]. Most often, the frequencies are located on an inter-beam 
position in the spectrum, thus requiring supplementary processing such as interpola-
tion algorithms for finer frequency estimation. An in-depth approach to this topic is 
presented in [2]. The interpolation is made using two or three points in the real part 
of the DFT or the magnitude DFT. The main idea is to find a correction coefficient, 
which represents the distance between the actual frequency and the frequency found 
using a standard DFT. Several papers presenting these algorithms are [3]- [13]. Thus, 
knowing the amplitudes for a given context is crucial for the precision of frequency 
estimation algorithms. However, no papers have considered the initial phase of the 
signal in a special way when estimating the frequencies.  
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In our previous research [14]-[16], we developed a frequency estimation tech-
nique supported by Machine Learning (ML) to find the frequency at an inter-line 
position. This technique finds the correction coefficient using an Artificial Neural 
Network (ANN) that has as inputs the biggest values in the magnitude DFT. 

By applying the ANN-supported algorithm, we observed that the estimation 
precision decreases if the signal has the initial phase differing from zero. The inac-
curacy occurs because the amplitudes in the magnitude DFT present slight changes 
if the signal has an initial phase. To better train the network, we propose using as 
input in the ANN not just the biggest values in the magnitude DFT but also those 
real and the imaginary parts of the DFT. This paper presents the spectral values' 
dependency on the initial signal phase.    

2. Theoretical background

The real Discrete Fourier Transform decomposes an input signal x[n], having N 
discrete samples taken over time into two output signals that contain the amplitudes 
of the component sine and cosine waves. The output signals have N/2+1 points that 
represent the frequencies of the sine and cosine waves in which the input signal x[n] 
is decomposed. The input signal is said to be in the time domain, while the output 
signals are representations in the frequency domain. A schematic of the process is 
presented in Figure 1. 

 

Figure 1. The real DFT 
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Let us consider the discrete-time sinusoid. It can be expressed 
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where A is the signal amplitude, fR is the actual signal frequency, fS is the sampling 
rate, and φ0 is the initial phase expressed in radians. In the above equation, n is the 
sample number, which takes values between 0 and N-1. 

The mathematical relation to calculate the values for the amplitude on the k-th 
spectral bin of the real part is  
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while the amplitude on the k-th spectral bin of the imaginary part is calculated with 
the mathematical relation 
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 With these two sets of values, the N/2+1 values of the magnitude DFT for the 
individual spectral bins are calculated with the mathematical relation 

 ( ) ( )2 2Mag [ ] Re [ ] Im [ ]X k X k X k= +  (4) 

We denote the biggest amplitude in the magnitude DFT as Amax, the value found 
at its left as Apre-max, and the value found at its right as Apost-max. Similarly, for the 
amplitudes in the real part, we use Rpre-max, Rmax, and Rpost-max; for the imaginary part, 
we use Ipre-max, Imax, and Ipost-max. 

3. Numerical simulation  

To find the effect of the initial phase on the amplitudes, we first consider a si-
nusoidal signal with a given frequency and length and with the initial phase set to 
zero. For this signal, we calculate, with equations (2)-(4), the values of the real part 
ReX[k], the imaginary part ImX[k], and the magnitudes MagX[k]. Note that we nor-
malized the values of ReX[k] and ImX[k] by multiplication with 2/N in order to ob-
tain all amplitudes related to the signal.  

Next, we iteratively increase the initial phase with a small step until the initial 
phase achieves 2π. For each step, we identify the picks and its neighbors in the real, 
imaginary, and magnitude DFT. We associate these values with the frequency fE 
found on the spectral line of Amax and the actual frequency fR.  
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The identified values are stored in a database with the structure presented in 
Table 2. The database aims to provide data for training an ANN to estimate the cor-
rection coefficients and the signal's frequencies accurately. Numerous initial phases 
are considered in this analysis to complete the database. 

 
Table 1. The structure of the database realized for training the ANN 

Role Parameter Symbol 
Initial phase [rad] 

0 … 2π 

ANN Input Amplitude [m/s2] 

Rpre-max    
Rmax,    
Rpost-max    
Apre-max    
Amax    
Apost-max    
Ipre-max    
Imax    
Ipost-max    

Support 
Actual frequency [Hz] fR    
Estimated frequency [Hz] fE    

ANN Target Correction coefficient [Hz] δ    
 
First, we exemplify the evolution of the amplitudes in several cases. The first 

signal contains N = 207 samples by a sampling rate fS = 167 Hz, resulting in a signal 
time length t = 1.23353 sec, a time resolution Δt = 0.00599 sec, and a frequency 
resolution Δf = 0.81068 Hz. The signal amplitude is A = 1 m/s2, and the frequency is 
fR = 5 Hz. As mentioned, we set the initial phase φ0 = 0 rad for the first simulation. 
Afterward, we increase the value of the initial phase with 0.1π until the initial phase 
achieves 2π. 

To have an image of the amplitude/initial phase dependency, we consider it 
sufficient to present the evolution of the picks in the real part, imaginary part, and 
magnitude DFT, namely Rmax, Imax, and Amax. Note that while the values of Rmax and 
Imax can be real positives or negatives, the values of Amax are always real positives. 
Figure 2 presents this evolution.  

We observe in Figure 2 that the evolution of the picks is sinusoidal/cosinusoi-
dal, which is justified by the mathematical relations that express the real and imagi-
nary part terms. 
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Figure 2. The evolution of the picks with the initial phase for a signal generated 

with N = 207 samples 
 

We now consider a signal generated with N = 201 samples to get a more com-
plete image of the phenomenon. This signal length is chosen because it comprises 
six sinusoids, so its DFT gives a good frequency estimate. The signal amplitude  
A = 1 m/s2, the frequency fR = 5 Hz, the sampling rate fS = 167 Hz, and the time 
resolution Δt = 0.00599 sec remain unchanged. For these parameters, the length of 
the second signal becomes t = 1.1976 sec, which results in the new frequency reso-
lution Δf = 0.835 Hz. As in the first case, we set the initial phase φ0 = 0 rad for the 
first simulation and increase it with 0.1π until the initial phase achieves 2π. 

 

 
Figure 3. The evolution of the picks with the initial phase for a signal generated 

with N = 201 samples (signal contains six entire cycles) 
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Figure 3 depicts the pick evolution for the real part, imaginary part, and magni-
tude DFT, namely Rmax, Imax, and Amax, for the signal generated with 201 samples. It 
can be observed that the Amax is much closer to the actual amplitude, and it has a 
more minor variation.  

To have consistent results, we analyze a third signal generated with N = 204 
samples by maintaining the amplitude, the frequency, the sampling rate, and the time 
resolution. For these parameters, the signal length becomes t = 1.21557 sec and the 
frequency resolution Δf = 0.82266 Hz. As in the first case, we set the initial phase  
φ0 = 0 rad for the first simulation and increase it with 0.1π until the initial phase 
achieves 2π. The obtained results are presented in Figure 4. 

 

 
Figure 4. The evolution of the picks with the initial phase for a signal generated 

with N = 204 samples 
 
In Figure 4, we observe that Amax is closer to the actual amplitude when com-

pared to the signal containing 207 samples but not so close as those for the signal 
generated with 201 samples. The amplitude variation is also between the two previ-
ously studied cases. This demonstrates that the closer the signal length is to a multi-
ple of the period T, the better the amplitude is found. 

A more explicit evolution of Amax is shown in Figure 5. It can be observed that, 
for all signals, the biggest amplitude was not obtained for the initial phase set at zero. 
It is also remarked that the amplitudes for the signal generated with 207 samples 
vary between 0.92205 and 0.95195, so the absolute difference is less than 0.015, 
which means a difference of 1.5%. This difference is relevant for frequency estima-
tion so that the training of the ANN must contain the sets of values derived for all 
initial phases. 
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For the shorter signal generated with 204 samples, the amplitudes Amax vary  
between 0.95821 and 0.97535, so the absolute difference is 0.00857, which means a 
difference of less than 0.857%. 

 

 
Figure 5. The evolution of Amax with the initial phase for different signal lengths 

 
The signal containing six cycles provides the most accurate amplitudes Amax, 

varying between 0.99797 and 1.00096. The absolute difference is 0.0015, which can 
be neglected in practical applications. However, because the initial phase is not 
known a priori, the input data for the training of the ANN must comprise scenarios 
for different signal lengths and initial phases. 

4. Conclusion 

The initial phase influences the amplitudes shown in the magnitude spectrum 
and the spectra of the real and imaginary parts. For a signal that is a multiple of the 
signal period T, all amplitudes calculated in the DFT magnitude spectrum, regardless 
of the initial phase, vary very little around the actual signal amplitude. We found a 
variation of less than ±0.15% for the studied signal. 

When the signal is not a multiple of the signal period T, all the calculated am-
plitudes are smaller than the actual signal amplitude, and the amplitude variation is 
more significant than in the particular case when the signal comprises an entire num-
ber of cycles. For such signals, we found an amplitude variation due to the initial 
phase change of up to ±1.5% for the analyzed signals, but we presume it can be more 
extensive than that when the signal length is t = T(m+0.5) cycles. 
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In the following study, we will approach more signal lengths to cover an entire 
cycle of length T representing a signal period. This study, in correlation with the 
phase shift analysis, will permit the creation of a robust database for ANN training 
and accurate frequency estimation.    
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